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Abstract—Extended irreversible thermodynamics is employed to model porous media. The basic ideas are to
raise the heat flux and the diffusion flux to the status of independent variables and to view the porous medium
as a binary mixture formed by a perfectly rigid solid and a fluid. Among other results, Brinkman’s law receives a
sound thermodynamic justification and the range of applicability of Darcy’s law is precisely stated. The model
is applied to study natural convection in a thin porous layer heated from below (Bénard’s instability). The
problem is treated by alinear perturbation analysis: the role of the boundary conditions and the permeability
on the onset of convectionis stressed ; special attention is also drawn on the effects of a temperature-dependent
viscosity.
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1. INTRODUCTION

THE AM of this paper is to present a coherent
mathematical modelling of fluid flows through porous
media. This is achieved within the framework of
extended irreversible thermodynamics [1-4]. In this
formalism, the dissipative fluxes, like the heat flux and
the diffusion fluxes, are considered as independent
variables besides the classical ones, formed by the
density, velocity, temperature and concentrations
fields. The time evolution of the extra variables is
assumed to be governed by first-order time differential
equations.

In the study of porous materials, the basic relation is
thelawof Darcy [5]; it expresses that for an isothermal
fluid, moving with a slow steady velocity v through a
porous, homogeneous and isotropic bed under the
action of a pressure gradient Vp, one has

Vp+-l”5v=o, 1)

n is the dynamic viscosity of the fluid, K the
permeability of the medium.

But it was soon noticed that Darcy’s law was
inconsistent with the no-slip condition. This motivated
Brinkman [6] to modify Darcy’s equation by adding a
second-order velocity gradient resulting in

Vp+17K—:—v-ﬁV2v -0, )

where # is the so-called effective viscosity.

Several interpretations {7-14] have been proposed
to put the laws of Darcy and Brinkman on a sound
basis. Most of them are formulated by using either the
classical [15] or the rational [16] thermodynamics of
irreversible processes. In the present study, porous
media are approached from a different point of view,
namely extended irreversible thermodynamics. It is
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seen that this scheme provides a simple derivation of the
Darcy and Brinkman laws whose range of validity and
applicability will be clearly stated.

One considers a porous medium consisting of a rigid
body permeated by a one-component incompressible
viscous fluid. It is assumed that the pore configuration
has a scale length which is small compared to a
macroscopic reference scale. The material is thus fine
grained and may be viewed as homogeneous at the
macroscopic level. Within these hypotheses, one is
allowed to model the porous medium by means of a
solid-fluid mixture [4, 7, 8] wherein every point in
space is occupied simultaneously by rigid solid and
fluid particles. Phase changes, chemical reactions as
well as interfacial effects are ruled out.

In Section 2, the notation is introduced ; the balance
and constitutive equations are formulated. Limitations
on their forms are imposed by the second law of
thermodynamics and the principle of objectivity ; these
constraints are given explicitly in Section 3. A linearized
version is proposed in Section 4; it is seen that it
contains the Brinkman and Darcy models as particular
cases. As illustration of our formalism, Bénard’s
convective instability is treated in Section 5. The
prominent parts played by the permeability and a
temperature-dependent viscosity are displayed. Final
comments are found in Section 6.

2. NOTATION AND BASIC EQUATIONS

Subscripts s and f refer to the solid and the fluid parts
of the medium, respectively.

The porosity is defined as the volume occupied by the
fluid divided by the total volume, it can be expressed as

f
&=

Ye
where p; represents the ratio of the mass of fluid and the

ee[0, 1], 3)
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NOMENCLATURE

ay, a, coupling coefficients &  porosity

¢, specific heat n  dynamic viscosity

¢, ¢, concentrations 7 effective viscosity

d  thickness of the layer f  temperature

D,,D, diffusion coefficients © amplitude of the temperature field

F specific body force k  heat diffusivity

1  identity tensor A heat conductivity

J  diffusion flux Ay, Ay coupling coefficients

K permeability Ay A, coupling coefficients

2" dimensionless permeability 4 chemical potential

p  pressure v kinematic viscosity

Pr Prandtl number p  density

q  heat flux g time growth constant

r  specific energy supply o stress tensor

Ra Rayleigh number o' viscous stress tensor

s specific entropy 7; relaxation times (i = 1,2, 3)

t time Helmbholtz free energy.

T temperature

u  specific internal energy

v velocity field Subscripts

V  velocity gradient tensor f  refers to the fluid component

w  normal component of the velocity s  refers to the solid component.

W amplitude of the vertical velocity

component Superscripts
X  space coordinate. * material time derivative
*  dimensionless quantity

Greek symbols 0 reference quantity

o  heat expansion coefficient b basic unperturbed solution

y  true density p  perturbed solution

V  nabla operator T transposition.

volume of the whole medium ; y, often referred to as the
true density, is the ratio of the mass of fluid and the
volume occupied by the fluid, y; is a constant for an
incompressible fluid. For a saturated porous medium,
one has, in terms of the solid phase,

l—g=" 4

s
The total density p and the barycentric velocity v are
defined by
p = pi+ps = e+ (1—eys, &)
and
pv = eyVe+ {1 —€)yvs, ()]

where v, and v, denote the velocity of the fluid and the
solid components, respectively.
The fluid and solid diffusion fluxes are given by

Jf - pf(vf"“v), Js = ps(VS”V), (7)
with, as a consequence of (6),
Ji+J, =0 8

For further purposes, we introduce also the

congentrations ¢; and ¢, :

Pe Ye Ps
== c, = —

4 P 14 14
with

cf+C5 =1 (10)

Theequations of evolution are the usual balance laws
of densities, total momentum and energy:

De=—p,V'v—=VJ, or pé,=-V-J, (I1a, b)
pv=V-a+y pF, {(12)
(13)

pi=~Vg+o:V+3 J, F +pr.

o stands for f and s, respectively, while a dot over a
character denotes the material time derivative, 6 is a
symmetric stress tensor, conveniently decomposed
according to

(14)

where p is the thermodynamic equilibrium pressure, I
the identity tensor, ¢” the viscous stress tensor. The

o =—pl+d,
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remaining undefined quantities in (11)<13) are: 4, the
specific internal energy; q, the heat flux vector; r, the
specific energy supply; F,, the specific body force,
assumed to be identical for both constituents; V, the
symmetric velocity gradient tensor

V = {[Vv+ (VW] (15)

in (15), superscript T means transposition. We also
introduce a positive empirical temperature . Note that
one has avoided using momentum and energy
equations for the individual constituents because such
relations involve undefined quantities—partial stress
tensors, partial momentum supply, partial heat fluxes,
etc. After summation of (11) on the two constituents,
one recovers the law of conservation of the total mass:

(16)

We now formulate the problem in the framework of
extended irreversible thermodymanics(for a review, see
[3]). Our final objective is to determine the behaviour of
the seven independent variables p;, p, (or p and ¢}, v, 8,
g, ¢*, J; (or J,) as a function of space x and time t. In
contrast with earlier theories of non-equilibrium
thermodynamics, the fluxes q, 6¥ and J; are no longer
considered as dependent variables but instead they are
treated as independent quantities, at the same level as
the classical variables g, p,, v and 8.

To compensate for the lack of evolution equations,
supplementary rate equations for the dissipative fluxes
are introduced besides the classical balance equations
of mass, momentum and energy; they are assumed to
be first-order differential equations of the form

p=—pV-v.

7,4 = §(C), 17
7,0, = J(C), (18)
146" = 6(C), (19

1y, 7, and 15 represent relaxation times; g, ¢ and J are
response functions supposed to be functions of the
whole set C of variables ; C stands for

C=p,¢,0,Vp, V¢, VO, V, q,6%, J;. (20)

In (20), the velocity field v has been replaced by the
velocity gradient tensor V to be in agreement with the
principle of objectivity [17]. The latter demands also
that the response functions are isotropic functions of
the variables with respect to Euclidean transformations
and that the non-objective material time-derivatives
be replaced by objective ones [3]. However, since we
areprimarily concerned with the formulation of a linear
theory, the lack of objectivity of the time-derivatives is
notimportant within the present context. The gradients
of the ‘slow’ variables p, ¢; and 8 have been introduced
among the set (20) of variables in order to include the
effects resulting from density and temperature
inhomogeneities. As stated earlier, the deformation of
the solid constituent is neglected ; such an effect could
be formally included in the present formalism but it
would obscure the specific points that are intended to
be enlightened.

HMT 29:3-C
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We are faced with a system of seven evolution
equations (11)-(13) and (17)—(19) involving only one
single unknown quantity, the internal energy u. The
problem is well posed by expressing u in terms of C, via
the constitutive relation

u = #{C). (21

Limitations on the response functions §, &, Jandu
are introduced by the second law of thermodynamics,
which, in its general form is given by 3, 16]:

) 1 r
pi> =V ola—p)+p g @2
sis the specific entropy, /8 the specific entropy supply,
and p(= p;— ug) the chemical potential.
The entropy inequality (22) introduces one new

unknown s, which implies that a supplementary
constitutive equation is needed :

5 = SO (23)

Moreover, since the temperature has been selected as
independent variable, it is more natural to use the
Helmholtz free energy ¢ = u—0s rather than the
internal energy as dependent variable. It follows that
the constitutive relation (21) must be replaced by

¥ = §(O). 24

3. LIMITATIONS IMPOSED ON
THE RESPONSE FUNCTIONS

In this section, we shall not enter into the details of
calculations which have been explicitely developed in
the past [2-4].

Elimination of r between the energy balance (13) and
the entropy inequality (22) yields

. . 1
—pl +s6)— gve.qw:v_av'(% Jf) >0, (25

To obtain the restrictions on the various response
functions, one must differentiate (24) with respect to the
time and substitute it into (25).
This operation results in
) Vv

A N (% _ 200
”(ae “)‘”(c‘fcf ‘“)V "‘*(” %

o o ) o
”(E LRI J‘+%7'”)"pa(ve)
F o
- Vp—p-———-Vc
Pave PP avey

W oo logqany. v (#
— sy Vg Vorate V-0, v<§>>o, (26)

where use has been made of (11b)and (16) to eliminate ¢;
and g ; the decomposition (14) has also been employed.
It is noticed that the inequality (26) is linear in the

quantities 6, V+J;, V8, Vp, Ve; and V. Clearly, the
positiveness of (26) is assured at the condition that
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the factors of these quantities vanish. This requirement
leads to the following relations:

o _
=4 +§=0, =G 27
G . a_& B
a(Vp) o(Ve) a(Vh) oV 0 28)

Theresults (27) are well-known while{28) expresses that
i (as well as s}isindependent of the gradients of the slow
variables; as a consequence ¥ and s can be written as

‘/" = ‘;(pv Cs» 97 4. o.v’ Jf)’ (29)
s = ${p, ¢, 6, g, 0%, Jg). 30

With the above results in mind, the entropy
inequality reads as

o0 1, o 1y 8 1
p(aq Ty q+ an T2 f+ oe" T3a

+ (pz a—w - p) Vv

1 H

- 5q~V0+a“:V—6JfV 2 =0. (31)
Set

p=p">, 32
where p is a generalized pressure which reduces to the
equilibrium pressure p at equilibrium. Collection of the
results (27), (28) and (32) leads to the generalized Gibbs

equation

p é
dyy = —s d0+—:%dp+u dee+ l-dq

aq

o oy

+2¥.4 :da".
g W i, (33)

In the classical theory of irreversible processes [15],
only the first three terms in the RHS are present.

4. RESULTS NEAR EQUILIBRIUM:
THE BRINKMAN AND DARCY LAWS

By equilibrium we mean a state with time-
independent variables, neither temperature nor
velocity gradients and absence of dissipative fluxes.
Near equilibrium, it is reasonable to approximate the
evolution equations by their linearized forms

1,09 = —q—AVO—ad;—AVp—DVe, (34)
1, 8¢ = —Je— D, Ve, —aq— A, Vp— 4,V8, (35)
(36)

where the various coefficients may depend on p, ¢; and
0. For steady processes and no coupling, one recovers
the usual Fourier, Fick and Newton-Navier equations.
It is therefore justified to identify the coefficients A, D,
and n respectively with the heat conductivity, the

13 06° = —a"+1V,
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diffusion coefficient and the shear viscosity; the
coupling coefficients D,, a,, A,, a,, A, and 4, describe
the interactions between the heat and mass flows.
Equation (34) generalizes the Vernotte—Cattaneo [18,
19] relation

7, 0 = —q—AV0, (37)
while (36) is nothing but the Maxwell relation [207. If
one replaces in (35) the flux J; by its definition (7) and

makes use of the momentum balance (12}, one obtains a
balance equation for the fluid velocity given by

205 0% = — pel¥r—V) + % 0,(V-0+Y p.F,)

—a,q—A,V8—A,Vp—D,Vc,.. (38)
Recalling that the solid is rigid (v, = 0}, one has
v="1y, (39)

After substitution of (39} in (38) and elimination of g by
means of (34) wherein , is assumed small compared to
1,, one obtains

PiPs

Topg 0¥ = — {1—aa)v

‘;Tz( Vp+nViv+} pFo)+V0(da, — 1)

+{ay Dy~ Dy)Ver+(a A — A)Vp.  (40)

This equation is the key relation of the present note. In
contrast to other works concerned with porous media,
it is the acceleration rather than the velocity which is
expressed in terms of the set of independent variables.
The consequences on a typical problem of fluid
mechanics, like Rayleigh—~Bénard thermal convection,
will be examined in the next section.

For further comparison, let us define the perme-
ability X by the relation

pi(l—a,a,) =_{T_‘ @1
Ty K

Since the coupling coefficients a, and a, are generally

small compared to unity, it is reasonable to write

h_, "
Ps 2(1_’8)?5

According to the kinetic theories, e.g. [22, 23], the
relaxation time 7, is related to the mean free time or the
reciprocal of the collision frequency of diffusing
particules; for usual fluids, 7, takes values ranging
between 108 and 10~ 35, The result (42) indicates that
K is of the same order of magnitude, ie. K ~ 1078~
10~ 13 m2

Within the limit of an incompressible and isothermal
fluid for which Vp = V¢, =V8 =0, the balance
equation (40) simply becomes

(42)

=‘[2

43)

n
P atvf = EVF“VP‘F gp{”vzvr'Q'Z paFu
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For steady flows and in the absence of external forces,
one recovers Brinkman’s relation
" )
Vp+Evf—r]V v =0, 44)
where 7 = (pg/p)n is the effective viscosity. Clearly (43)

reduces to Navier—Stokes’ equation as K — oo and to
Darcy’s relation

Vp+ v, =0,

X (45)

if K/d? « 1 (d denotes a spatial length scale).

Darcy’s law is usually selected when the volume of
the solid particules is larger than the volume occupied
by the fluid, otherwise Brinkman’s law is preferred.

It is important to realize that Brinkman’s law has
been established on sound macroscopic thermody-
namical bases and appears as a simplified form of
the evolution equation for the fluid flow.

Our next objective is to formulate the energy balance
equation. Using the definition

u=yY+0s

and the Gibbs relation (33), one obtains within the
linear approximation:

o(p
_ . 2
O = ¢ 0.8 [9 00 (,ﬂe)],a.p

—[926%@)] d,c+0Q2), (46)

where subscript e refers to a quantity measured at
equilibrium, parameter c, is the heat capacity evaluated
at equilibrium. Substitution of (46) in (13) yields the
equation governing the temperature field :

0 ofp
08 =—V-q— —— ==}V
pe. Oy V-q [p+p ae(;ﬂo)],v v

—[02%<%)] V-J+a:V+pr. (47)

Although the model developed in this section is
rather simple, there is no fundamental difficulty to
extend it by including, for instance, the deformation of
the solid matrix and the effects of interface between the
solid and liquid phases. However the objective of the
present note is not to propose a complete theory of
porous media but rather to emphasize the con-
sequences resulting from a descriptive within the
framework of extended irreversible thermodynamics.

5. NATURAL CONVECTION
IN POROUS MEDIA
(BENARD PROBLEM)

The model proposed in Section 4 is used to describe
natural convection in a horizontal layer of a saturated
porous medium heated from below. The layer, of
thickness d, extends to infinity ; it is bounded above and
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below by either rigid or stress-free plane surfaces,
moreover the boundaries are either perfectly heat
conducting or adiabatically insulated. The porous
medium is saturated by an incompressible fluid of
dynamic viscosity #. It is assumed that the heat flux and
the viscous stress relax mush faster than the diffusion
flux (r; « 73, T3 « 7,), which is expected to be the
dominant effect in the present problem. Throughout
this section, only infinitesimaily small disturbances are
considered.

In the unperturbed reference state, the porous
medium is at rest with a temperature drop AT between
the lower and upper bounding surfaces. Within
Boussinesq approximation, the relevant equations are

Vv, =0, (48)
V-J; =0, 49)

1 ©
f—’vf+—o(—-Vp+p—f°11V2vf)
Pt P p

1
+ L g (a,q+4,V6), (50)

[°]

4 PsT2

p°c.08=—V-q, (51)

q=—2a, ”;}# Ve— AV, (52)

the density p is given by the state equation
p=p[1-a6-067],

« is the heat expansion coefficient and superscript °
refers to a constant value calculated at the reference
temperature 6°,say the steady temperature of the lower
face of the layer. Equation (48) indicates that the fluid is
incompressible and (49) that the concentration remains
constant, the latter being a consequence of the former.
Equation (50) is a reformulation of (38) wherein
Boussinesq hypothesis has been introduced. Within the
same approximation, the energy balance takes the
simple form (51) (no viscous dissipation) while (52) is a
simplified form of (34) wherein all the above mentioned
hypotheses have been used, (52) may also be viewed as
an extension of the Fourier law involving an extra
linear term in the fluid velocity.

From now on the procedure is routine. One
determines firstly the solution in the basic quiescent
state given by

AT AT
w=0 6'=—"—"-z+80,, q"=/17ez, (53

d
where e, is the unit vector pointing upwards and index b
refers to the basic solution. After onset of convection,
the variables take the values 6, v; and q and one defines
perturbed quantities by

P=06-6° vP=v, q°=q—q° p°=p—p° (54

Eliminating q° with the help of (52), equations (51) and
(50) reduce to

AT
0,0°P — — w = kV26P,

- (55)
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v 1 P
OV = — }Z Vg ; VpP+ ;f Wiy + «0°g

1
+ I (Aaz - XZ)VQP, (56)
Pel2

superscripts zero affecting the densities have been
dropped, « is the heat diffusivity, v the kinematic
viscosity, w the vertical component of the fluid velocity.
Elimination of Vp® and V6? in (56) and adimensionaliz-
ation of z, t, w, 0 by means of d, d%/x, x/d and AT yields
the following set of equations:

8,0% —w* = V2g*, 57

1 1
— 3,Viw* = Ra Vig* — — Viw*
Pr 4

FVAWE, (VE= 32 402). (58)

In (57) and (58), an asterisk denotes a dimensionless
field; Pr, Ra and ¢ are the Prandtl, Rayleigh and
permeability dimensionless numbers, respectively
defined by

Y

o .e agATd? _ /K
p

" (pelphvie’ pd*’

Apart from the factor p./p, these expressions are
classical. When " — oo, one recovers the well-known
relations governing the Bénard—Rayleigh problem. In
the limit 2" — 0, (57) and (58) are identical to the
equations derived from Darcy’s law [24, 25].

We search for solutions of the form

(w*, 0%) = [W(z), ©(z)] exp (k- x+01)  (60)

wherein W(z) and 6(z) are the amplitudes of the
disturbed velocity and temperature fields, k the
horizontal wavenumber, x the horizontal position
vector, o the time growth constant. At marginal
stability, not only the real part (Re ¢) but also the
imaginary part {Im o} vanish since the set (57)-{58)
coupled with the appropriate boundary conditions is
self-adjoint; as a consequence, exchange of stability
holds. After substitution of (60) in (57) and (58), one
obtains the following equations for the amplitudes at
marginal stability :

(D2~ k2?W — o ~{D*— k)W =A"*Ra®, (61)
(D*—k*© = ~W, (62)

pr (59)

where D stands for 4,.
The associated boundary conditions at z = 0 and
z=1are:

® = 0 (isothermal surface),

D® = 0 (thermally insulated surface), (63)

W = DW = 0 (rigid surface), (64)

W = D?W = 0 (free surface). (65)
Elimination of ® between (61) and (62) leads to

(D2 —K2P3W — A " YD?—k%P*W = —k*RaW, (66)

whose solution for two free surfaces, perfectly heat
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conducting, is

W=Asinnrz (n=12,...). (67)

The marginal stability curve, Ra vs k, is derived by
replacing (67} in (66); one finds

(PR

Ra 2

[t (m? + k)] 68)
The critical values R, and k., are obtained from

ORa/0k = 0 and given by

(n2 4+ k2)?
R, = ——P‘C‘“ (A +k2),
2 —A+. /A% + 874
k2= 7 , (69)
where A stands for
A=HA"1 402
For " — oo, one recovers
2 27
k, = -\gn R.="n, (70)
and for A" — 0,
k,—n, AR, —4n?, (7

AR, is generally referred in the literature as the
Rayleigh-Darcy number. The results (70) and (71) are
well-known : (70) are the critical values obtained from
the classical Navier—Stokes equations while(71)are the
critical parameters corresponding to the use of Darcy’s
law, coupled with the boundary conditions® = W =0
[11]. Intermediate, critical values corresponding to %~
ranging from 107° to 10~ 2 are given in Table 1.

When both surfaces are not free and perfectly heat
conducting, no analytical solution of (66) is available
and numerical calculations are needed. Reported in
Tables 2 and 3 are some critical valuesof R and k,asa
function of ), when the face below is rigid and
isothermal while the face above is successively rigid,
thermally conducting and free, thermally insulated.
The problem has been solved by using a Galerkin
technique whose details can be found in earlier works
by the authors, ¢.g. [26-28].

Tables 1 and 2indicate that, for tworigid and two free
isothermal bounding surfaces, stability is increased
with respect to Darcy’s model. This is not surprising
since the supplementary contribution introduced in
our analysis is a viscous term whose effect is to inhibit

Table 1. Critical values # R, and k,: two free isothermal faces

o AR, k.
107° 39.48 3.14
1078 39.48 312
1073 4025 311
1072 4727 292

o (Navier-Stokes)  657.5(=R.) 222
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Table 2. Critical values # R, and k, : two rigid isothermal faces

x> AR, k,

0 (Darcy) 472 (39.48) 7(3.14)
10-° 415 322
1076 416 321
10-3 437 3.20

o (Navier—Stokes) 1708 (=R,) 3.12

instability. It is also noticed that the stability limit is
practically unmodified when 2 varies from 0 to 10~3,
This confirms earlier conclusions by Katto and
Masuoka [23] who stated that a linear stability
analysis based on Darcy’s law is acceptable even for
large values of the permeability. Similarly, the critical
wavenumber is only slightly affected by the variation of
the permeability ; one observes however a small decay
for k., which means larger convection cells, when the
permeability increases.

Most of the above observations can be repeated for
Table 3. R, as well as k_ are rather insensitive to the
variations of X" ; as expected, the system is less stable
than in the case of two rigid boundaries. But unlike the
results of Tables 1 and 2, one now notices a considerable
difference with respect to Darcy’s model: the critical
Rayleigh-Darcy number differs by more or less 300%,
and the critical wave number by more than 150%.

The analysis of the results shows also that when the
permeability tends to infinity, instability is not altered
by the presence of the porous medium. The system
behaves like an ordinary fluid, with critical wave
Rayleigh numbers equal to 657.5, 669 and 1708
according to the boundary conditions. In contrast, for
small values of the permeability, the Navier-Stokes
equations must be discarded on behalf of more
elaborate models including explicitly the effects of the
porosity.

All the results presented up to now are based on the
Boussinesq approximation stating, among other
simplifications, that the viscosity of the fluid is
independent of the temperature. In the following, we
relax this constraint by assuming that the viscosity
depends linearly on the temperature [29, 30]:

v =v[1+(0p)°AT]. 72)

As a consequence, the term in vV2y; must everywhere

be substituted by V - (vWv,). It is readily checked that at
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marginal stability, the basic relation (66) is replaced by
(1-R,2)[(D*— k%W — o~ (D>~ k*)*W]
—RI4D?*—k*)?DW -3 ~{(D?—k?)DW]

= —k2RaW, (73)

where R, stands for the dimensionless viscosity number
6 (o}

R, = AT (74)

For common fluids, R, takes values ranging from —0.5
for oil to 0.5 for air [30]. The eigenvalue problem has
been solved for two free and perfectly heat conducting
surfaces in the Appendix. The critical Rayleigh-Darcy
numbers are listed in Table 4 as a function of the
dimensionless number R, for three values of ¥, namely
A =0,10"2 and .

The critical wavenumbers are not reported in Table 4
because they remain close to the values calculated for
R,=0. In contrast, the critical Rayleigh-Darcy
numbers are appreciably affected by the temperature
dependence of the viscosity. As a matter, X R_ varies by
about 259, when going from R, = 0to R, = —0.5and
bymorethan 359 passingfrom R, = OtoR, = 0.5.The
stability limit is raised with increasing absolute values
of R, for R, < 0 (i.e. in liquids) but for R, > 0 (i.e. in
gases), the stability limit is lowered when R, is growing.
Itisimportant to note that the variation of the viscosity
with the temperature plays a decisive role in
determining the onset of stability in Bénard—Darcy
problem.

6. FINAL COMMENTS

The present note has two objects in view : to describe
a class of porous media within the framework of
extended irreversible thermodynamics and to apply the
proposed model to the Bénard-Darcy convection
problem.

It is shown that extended irreversible thermody-
namics is particularly well suited for modelling
porous systems. Of course, in formulating the present
model, several simplifications have been introduced :
surface effects have been omitted, as well as changes of
phase or deformations of the solid matrix. But our
primary objective was not to give a complete

Table 4. Critical values of #'R_ for various assigned values of
R, and " : two free isothermal faces

Table 3. Critical values 'R, and k. : a lower rigid isothermal A
and an upper free insulated face R, 0 1072 o (Ry)

A X'R, k. -0.5 49 58.34 817
—0.3 45.25 53.88 754.5

0 (Darcy) n2(9.87) n/2(1.57) —-0.1 4145 49.32 690
10~° 273 2.30 0 39.48 46.99 657.5
10°° 273 2.29 0.1 375 44.62 624.5
1073 28.5 2.28 0.3 33.35 39.73 556.5
oo (Navier—Stokes) 669 (=R,) 2.08 0.5 28.96 34.57 485.5
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description of porous media but rather to extract the
main new features resulting from an analysis based on
extended irreversible thermodynamics.

One of the main interests of this work is to ground the
Brinkman model on sound thermodynamic founda-
tions. It is seen that Brinkman’s equations arise as a
particular expression of the evolution equation of the
fluid flow, when the gradients of the slow variables
(density and temperature) are negligible. The perme-
ability also receives an original interpretation in terms
of the relaxation time of the fluid flux.

To show that the proposed model is not a mere
abstraction, it is used to describe natural convection in
a thin fluid layer heated from below (Rayleigh—-Darcy
problem). Differences with earlier treatments based on
Darcy’s law are emphasized. In particular, it is shown
that the latter must be used with caution when the upper
bounding surface is free: in the case of an upper
thermally isolated boundary, the critical values of the
Rayleigh-Darcy number may differ by a factor of three,
according to whether our model or the Darcy model is
selected. It is also shown under which circumstances,
Darcy’s model is reliable: in general, it provides
reasonable results as long as the permeability is smaller
than 1073. The effect of a temperature-dependent
viscosity on the onset of convection can also be easily
included into the frame of our formalism. The results
indicate that this latter effect plays an important role:
the critical Rayleigh-Darcy number can differ by as
much as 35%, in comparison to its value calculated for a
constant viscosity.
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APPENDIX

Resolution of equation (73)
For the sake of clarity, let us recall expression (73):

(1—R,z) [(D*—k?*W — K " YD?—k**W]
—R [HD?—k¥)*DW — 3K "Y(D*—~k*DW]
= —k*RaW. (Al)

We seek solutions of the form

W= i cpz", (A2)
n=0
where the coefficients ¢, are obtained by substituting (A2) in
(A1); this operation yields the following set :
CpsCy,- .-, Cs Ar€ arbitrary,
(n+5 Gk2+x1
"+6)  n+5)n+6) "
R[8k*+ 3 1 +n(3k2+ " cars
(n+4)(n+5)(n+6)

Cnr6 = RyCnas
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. Q"1 +3k% .
n+3)(n+4)(n+5(n+6)
R[4k + 34~ 4+ n(3k2 + 2 " V]ca s,

n+2)(n+3)n+H(n+5n+6)
_ K*[Ra—k* (k2 + 2~ 1)] .
m+D)@+Dn+) A+ (n+5)(n+6) "
RE K2+ Veysy

T+ D)(+2)(n+3)(r+ )+ S n+6)

Without lack of generality, one is allowed to write W as the
sum of six independent solutions

n+2

(A3

W= Y oW, (%)
n=0
such that
W,=W for c,=1, ¢;=0 (i#n)
The ¢, are derived from the boundary conditions; from
W(0) = D*W(0) = ©(0) = 0; (A5)
it is readily seen that
co=¢,=0, (A6)
ca = R,[12¢5— (o ~' +2k*)c,]1/24, (A7)
while from
W(1) = D*W(1) = 0, (A8)
one obtains:
cs = —{a; ¢y +ascs), (A9)

6=~ ﬁ—:cl, (A10)
oy, 03, B, and B are respectively given by
5y PRO-RIE T 2IW@WA
Ws(1)
ay = [Wi(1)+ R, W,(1))/Ws(1), (A12)
By = 8%, —a, D2W(1), (A13)
B3y = 8%a5(1)—a;,D*Wi(1); (Al4)

where é'a; and 8'a, (i = 1,2,...) stand respectively for

Sla, = D'W,(1) =R ™1 +2k3)D'W,(1), i=1,2,... (Al5)

8ay = D'Wy(1)+ 2R, D'W,(1). (A16)

Finally, applying the remaining boundary condition
e)=0

leads to a characteristic equation which can be solved directly
for the eigenvalues Ra in terms of k, X and R, ; this equation
takes the form

(A17)

Ry 1 +2Kk?) {(Val —DW,(1)a, — -§—1[6‘a3—a3DW5(1)]}
3
—2Rv{63a, —a,D*W,(1)— %53% - a3D3W5(1)}
3

+(1-R,) {ml — o, D*Wi(1)— % [6‘a3—a3D“W5(1)]} =0.
3

(A18)

MODELISATION THERMODYNAMIQUE DES ECOULEMENTS DE FLUIDE A TRAVERS
LES MILIEUX POREUX: APPLICATION A LA CONVECTION NATURELLE

Résumé-—La thermodynamique des irréversibilités est employée pour modéliser les milieux poreux. L’idée de
base est de considérer le flux thermique et le flux de diffusion comme des variables indépendantes et de
considérer le milieu poreux comme un mélange binaire formé d’un solide rigide et d’un fluide. Parmi d’autres
résultats, la loi de Brinkman regoit une justification thermodynamique et le domaine d’application delaloi de
Darcy est établi avec précision. Le modéle est appliqué a ’étude de la convection naturelle dans une couche
poreuse mince chauffée par le bas (instabilité de Bénard). Le probléme est traité par I'analyse linéaire de
perturbation: le réle des conditions aux limites et de la perméabilité sur I'apparition de la convection est
dégagé : une attention spéciale est aussi portée sur les effets de la dépendance de la viscosité vis-d-vis de la
température.

THERMODYNAMISCHES MODELL VON FLUID-STROMUNGEN IN POROSEN MEDIEN:
ANWENDUNG AUF DIE NATURLICHE KONVEKTION

Zusammenfassung—Auf der Grundlage der irreversiblen Thermodynamik wird ein pordses Medium
modelliert. Die Grundidee ist, den Wiarme- und den Diffusionsstrom zu unabhingigen Variablen zu erheben
und das porése Medium als Zweistoffgemisch aus einem ideal starren Feststoff und einem Fluid zu betrachten.
Neben anderen Ergebnissen erhilt das Gesetz von Brinkman einen thermodynamischen Nachweis, und der
Anwendungsbereich des Darcyschen Gesetzes wird genau aufgezeigt. Das Modell wird angewendet, um die
natiirliche Konvektion in einer von unten beheizten, diinnen, porésen Schicht zu untersuchen (Bénard
Instabilitit). Das Problem wird mit einem linearen Storungsansatz gelost. Der EinfluB der Randbedingungen
und der Permeabilitdt auf das Einsetzen der Konvektion wird dargesteilt. Besonderes Augenmerk wird
auBerdem auf den EinfluB einer Temperaturabhéngigkeit der Viskositit gerichtet.
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TEPMOJAUHAMUYECKOE MOJEJIVNPOBAHME TEUEHUN XHUIAKOCTH YEPE3
TTOPHUCTBIE CPEJbL. CIYUAW CBOBOJHOW KOHBEKIIUHU

AnnoTauug—PaclliipeHHas TepMoIMHAMEKA HEOOPATHMBIX IPOLIECCOB HCMOB3YETCA IPH MOJETHPOBA-
HUM TOPHCTHIX cpen. OCHOBHbIE HAEH COCTOAT B TOM, YTOGHI aHAJIM3UPOBAThL TelioBo# U nuddy3uoH-
HbIii TOTOKM KaK HE3aBUCHMBIE IIEPEMEHHBIE 1 PACCMAaTPHBATh MOPHCTYIO Cpelly Kak OHHApHYIO CMECh,
06pa30BaHHYIO COBEPILEHHO XECTKHM TBepPAbIM TEJIOM M XUAKOCThbIo. Hapsay ¢ ApyruMu pesysbTa-
TaMH MOJIyMEHO MOATBEPXKICHUE 3aKkoHa BpMHKMaHa, a Takke 4eTKO ompedeseHa 061acTh MPHMEHEHKs
3akoHa [apcu. [pennoxeHHas MoJENb UCHOIb3YeTCs MUl M3YYeHHS CBOOGORHOM KOHBEKUMH B TOHKOM
MOPUCTOM CJI0€, HarpeBaeMo#t CHU3Y (HeycToiunBocTh benapna). 3anava aHagM3MpyeTCs ¢ MNOMOLUBIO
METOJA JIMHEWHBIX BO3MYILEHHH | TOJYEPKUBAETCH POJIb 'PAHHYHBIX YCIOBHH U IPOHHUAEMOCTH HA BO3-
HHKHOBEHHE KOHBeKLMH, ocobGoe BHHMaHue yaenserca 3ddekTaM, 0GyCIOBIEHHBIM 3aBHCHMOCTBIO BSA3-
KOCTH OT TeMIIEPaTyphl.



