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Abstract-Extended irreversible thermodynamics is employed to model porous media. The basic ideas are to 
raise the heat flux and the diffusion flux to the status of independent variables and to view the porous medium 
as a binary mixture formed by a perfectly rigid solid and a fluid. Among other results, Brinkman’s law receives a 
sound thermodynamicjustification and the range ofapplicability of Darcy’s law is precisely stated. The model 
is applied to study natural convection in a thin porous layer heated from below (Binard’s instability). The 
problem is treated by alinear perturbation analysis : the role of the boundary conditions and the permeability 
on theonset ofconvectionisstressed ;special attention isaisodrawnon theeffectsofa tem~rature-de~nde~t 

viscosity. 

1. INTRODUCTION 

THE AIM of this paper is to present a coherent 
mathematical modelling of fluid flows through porous 
media. This is achieved within the framework of 
extended irreversible thermodynamics [14]. In this 
formalism, the dissipative fluxes, like the heat flux and 
the diffusion fluxes, are considered as independent 
variables besides the classical ones, formed by the 
density, velocity, temperature and concentrations 
fields. The time evolution of the extra variables is 
assumed to be governed by first-order time differential 
equations. 

In the study of porous materials, the basic relation is 
the law of Darcy [5] ; it expresses that for an isothermal 
fluid, moving with a slow steady velocity v through a 
porous, homogeneous and isotropic bed under the 
action of a pressure gradient Vp, one has 

vp++=o, 
rl is the dynamic viscosity of the fluid, K the 
~rmeability of the medium. 

But it was soon noticed that Darcy’s law was 
inconsistent with the no-slip condition. This motivated 
Brinkman [6] to modify Darcy’s equation by adding a 
second-order velocity gradient resulting in 

(2) 

where + is the so-called effective viscosity. 
Several interpretations [7-141 have been proposed 

to put the laws of Darcy and Brinkman on a sound 
basis. Most of them are formulated by using either the 
classical [lS] or the rational [16] thermodynamics of 
irreversible processes. In the present study, porous 
media are approached from a different point of view, 
namely extended irreversible thermodynamics. It is 

seen that this scheme provides a simple derivation of the 
Darcy and Brinkman laws whose range of validity and 
applicability will be clearly stated. 

One considers a porous medium consisting of a rigid 
body permeated by a one-component incompressible 
viscous fluid. It is assumed that the pore configuration 
has a scale length which is small compared to a 
macroscopic reference scale. The material is thus fine 
grained and may be viewed as homogeneous at the 
macroscopic level. Within these hypotheses, one is 
allowed to model the porous medium by means of a 
solid-fluid mixture [4, 7, S] wherein every point in 
space is occupied simultaneously by rigid solid and 
fluid particles. Phase changes, chemical reactions as 
well as interfacial effects are ruled out. 

In Section 2, the notation is introduced ; the balance 
and constitutive equations are formulated. Limitations 
on their forms are imposed by the second law of 
thermodynamics and the principle of objectivity ; these 
constraints are given explicitly in Section 3. A linearized 
version is proposed in Section 4; it is seen that it 
contains the Brinkman and Darcy models as particular 
cases. As illustration of our formalism, Benard’s 
convective instability is treated in Section 5. The 
prominent parts played by the permeability and a 
temperature-dependent viscosity are displayed. Final 
comments are found in Section 6. 

2. NOTATION AND BASIC EQUATIONS 

Subscripts s and f refer to the solid and the fluid parts 
of the medium, respectively. 

The porosity is defined as the volume occupied by the 
fluid divided by the total volume, it can be expressed as 

e=; EE[O,l], 

where pr represents the ratio of the mass offluid and the 
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NOMENCLATURE 

‘?I> A2 coupling coefficients 

G specific heat 
cr, c, concentrations 
d thickness of the layer 
D,, D, diffusion coefficients 
F specific body force 
I identity tensor 
J di~usion flux 
K permeability 
,%/ dimensionless permeability 
p pressure 
Pr Prandtl number 

4 heat flux 
P specific energy supply 
Ra Rayleigh number 
s specific entropy 
t time 
T temperature 
u specific internal energy 
v velocity field 
V velocity gradient tensor 
W normal component of the velocity 
W amplitude of the vertical velocity 

component 
X space coordinate. 

Greek symbols 
M heat expansion coefficient 

Y true density 
V nabla operator 

E porosity 

rl dynamic viscosity 

ii effective viscosity 
0 temperature 
0 amplitude of the temperature field 
K heat diffusivity 
E. heat conductivity 
jL1, I”, coupling coefficients 
A,, .A2 coupling coefficients 

11 chemical potential 
V kinematic viscosity 
p density 
i7 time growth constant 
a stiess tensor 
a” viscous stress tensor 
zi relaxation times (i = 1,2, 3) 
II/ Helmholtz free energy. 

Subscripts 
f refers to the Auid component 
S refers to the solid component. 

Superscripts 
* material time derivative 
* dimensionless quantity 
0 reference quantity 
b basic unperturbed solution 
p perturbed solution 
T transposition. 

volume of the whole medium ; yr, often referred to as the concentrations cy and c, : 
true density, is the ratio of the mass of fluid and the 
volume occupied by the fluid, yr is a constant for an Pf Yf 

cy=-=.?---, (., = !5 - (l-E)Ys (9) 
incompressible fluid. For a saturated porous medium, P P P P ’ 

one has, in terms of the solid phase, with 

L-s& (4) 
c,+c, = 1. (LO) 

Ys The equations ofevolution are the usual balance laws 

The total density p and the barycentric velocity v are of densities, total momentum and energy : 

defined by fi, = -p,V*v-V*JJ, or pE, = -V*J,, (Ifa, b) 

and 

P = Pf+-Ps = %+(1--h, (3 l 

(12) 

pv = VfVf + (1 - 4Y,Vs, (6) P~=-v*q+u:V+~ J;F,+pr. (13) 

where v, and v, denote the velocity of the Auid and the a 

solid components, respectively. CL stands for f and s, respectively, while a dot over a 
The fluid and solid diffusion fluxes are given by character denotes the material time derivative, G is a 

Jr = pt(v, - 9, J, = PAV, - ~1, (7) 
symmetric stress tensor, conveniently decomposed 
according to 

with, as a consequence of (6), d = -pI+a’, (14) 
J,f J, = 0. (8) where p is the thermodynamic equilibrium pressure, I 

For further purposes, we introduce also the the identity tensor, a” the viscous stress tensor. The 
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remaining undefined quantities in (11)-(13) are : tl, the We are faced with a system of seven evolution 
specific internal energy ; q, the heat flux vector; r, the equations (1 l)-(13) and (17)-(19) involving only one 
specific energy supply; F,, the specific body force, single unknown quantity, the internal energy u. The 
assumed to be identical for both constituents; V, the problem is well posed by expressing u in terms of C, via 
symmetric velocity gradient tensor the constitutive relation 

v = i[Vv + (Vv)T] ; 115) 

in (Is), superscript T means transposition. We also 
introduce a positive empirical temperature 6. Note that 
one has avoided using momentum and energy 
equations for the individual constituents because such 
relations involve undefined quantities-partial stress 
tensors, partial momentum supply, partial heat fluxes, 
etc. After summation of (11) on the two constituents, 
one recovers the law of conservation of the total mass : 

b = -pv*v. (16) 

We now formulate the problem in the framework of 
extended irreversible thermodymani~s(for a review, see 
[3]). Our final objective is to determine the behaviour of 
the seven independent variables pr, ps (or p and cr), v, 0, 
q, u”, Jr (or J,) as a function of space x and time t. In 
contrast with earlier theories of non-equilibrium 
thermodynamics, the fluxes q, u” and Jf are no longer 
considered as dependent variables but instead they are 
treated as independent quantities, at the same level as 
the classical variables pf, ps, v and 0. 

I( = ti(C). (21) 

Limitations on the response functions Q, ir, 3 and li 
are introduced by the second law of thermodynamics, 
which, in its general form is given by [3, 161: 

pi 3 -V+q-fiJr)+p 5; (22) 

s is the specific entropy, r/9 the specific entropy supply, 
and p( = pr -& the chemical potential. 

The entropy inequality (22) introduces one new 
unknown s, which implies that a supplementary 
constitutive equation is needed : 

s = i(C). (23) 

Moreover, since the temperature has been selected as 
independent variable, it is more natural to use the 
Helmholtz free energy $ = u-f?s rather than the 
internal energy as dependent variable. It follows that 
the constitutive relation (21) must be replaced by 

$ = $0 (24) 

To compensate for the lack of evolution equations, 
supplementary rate equations for the dissipative fluxes 
are introduced besides the classical balance equations 
of mass, momentum and energy; they are assumed to 
be first-order differential equations of the form 

3. LIMITATIONS IMPOSED ON 

THE RESPONSE FUNCTIONS 

rril = ii(C), (17) 

rZJf = S(c), (18) 

T$i” = d(C), (19) 

r r, r2 and tg represent relaxation times ; tj, ci and J are 
response functions supposed to be functions of the 
whole set C of variables ; C stands for 

In this section, we shall not enter into the details of 
calculations which have been explicitely developed in 
the past [2-4]. 

C = P, cf, 0, VP, Vc,, VB, V, q, by, Jr. (20) 

In (20), the velocity field v has been replaced by the 
velocity gradient tensor V to be in agreement with the 
principle of objectivity [17]. The latter demands also 
that the response functions are isotropic functions of 
the variables with respect to Euclidean transformations 
and that the non-objective material time-derivatives 
be replaced by objective ones [3]. However, since we 
are primarily con~rned with the formulation ofa linear 
theory, the lack of objectivity of the time-derivatives is 
not important within thepresent context.Thegradients 
of the ‘slow’ variables p, cf and 8 have been introduced 
among the set (20) of variables in order to include the 
effects resulting from density and temperature 
inhomogeneities. As stated earlier, the deformation of 
the solid constituent is neglected; such an effect could 
be formally included in the present formalism but it 
would obscure the specific points that are intended to 
be enlightened. 

Elimination of r between the energy balance (13) and 
the entropy inequality (22) yields 

-p(~+s~)-~V~.q+~:V-W. 
( > 

; Jr 2 0. (25) 

To obtain the restrictions on the various response 
functions, one must differentiate (24) with respect to the 
time and substitute it into (25). 

This operation results in 

-$V-;V&q+o’:V-BJ,*V ; > 0, 
0 

(26) 

whereuse has beenmadeof(1 lb)and(l6)toeliminate& 
and b ; the decomposition (14) has also been employed. 
It is noticed that the inequality (26) is linear in the 

quantities 4, V * Jo @, 6, 6 and V. Clearly, the 
positiveness of (26) is assured at the condition that 
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the factors of these quantities vanish. This requirement 
leads to the following relations : 

a$ a$ z+s^=o, p=$ (27) 
f 

a$ a$ a$ a$ o. -=- =-=-= 
am ~(vc,) a(w) av (28) 

Theresults(Z7) are well-known while(2S)expresses that 
Jl(as well as s)is independent ofthegradients oftheslow 
variables ; as a consequence $ and s can be written as 

Jr = &P, cfr 8, q, bv, J3, (29) 

s = $(P, ci, 8, q, ~‘3 JA. (30) 

With the above results in mind, the entropy 
inequality reads as 

-p “i’.‘a+!J.+3,+ g+ 
(^ a ~~ f 2 * > 3 

+ p@-p v-v 

( - > ap 

-;qVB+a’:V-BJ,V f 20. (31) 
0 

Set 

_ ,a$ 
P’P ap’ 

where fi is a generalized pressure which reduces to the 
equilibrium pressure p at equilibrium. Collection of the 
results (27), (28) and (32) leads to the generalized Gibbs 
equation 

d$ =-sdB++dp+pdc,+%*dq 
aq 

+ !?!!_.,J 
aJf 

+ !!?!_.&f f au” * ’ (33) 

In the classical theory of irreversible processes [15], 
only the first three terms in the RHS are present. 

4. RESULTS NEAR EQUILIBRIUM: 

THE BRINKMAN AND DARCY LAWS 

By equilibrium we mean a state with time- 
independent variables, neither temperature nor 
velocity gradients and absence of dissipative fluxes. 
Near equilibrium, it is reasonable to approximate the 
evolution equations by their linearized forms 

zi a,q = -q-1VB-a,J,-A,Vp-D,Vc,, (34) 

rz a,J, = -Jr-D2Vc,-a,q-h2Vp-~I,V~, (35) 

r3 apv = --a~+qv, (36) 

where the various coefficients may depend on p, cr and 
0. For steady processes and no coupling, one recovers 
the usual Fourier, Fick and Newton-Navier equations. 
It is therefore justified to identify the coefficients I, Dz 
and q respectively with the heat conductivity, the 

diffusion coe@cient and the shear viscosity; the 
coupling coefficients D,, a,, A,, a2, A2 and A, describe 
the interactions between the heat and mass flows. 
Equation (34) generalizes the Vernotte-Cattaneo [ 18, 
191 relation 

ti at4 =-q-me, (37) 

while (36) is nothing but the Maxwell relation [20]. If 
one replaces in (35) the flux Jf by its definition (7) and 
makesuseofthemomentumbalance(12),oneobtainsa 
balance equation for the fluid velocity given by 

rzpr a,vr = -P&--v)+ ; %(V’@+C P,F,) 

-azq--a,VB-A,Vp-D,Vc,. 

Recalling that the solid is rigid (v, = 0), one has 

v,p’v 
P f. 

(38) 

(39) 

After substitution of (39) in (38) and elimination of q by 
means of(34) wherein r1 is assumed small compared to 
z2, one obtains 

T2Pf atvf = - y (I -u+~)v~ 

+ ; z2( - Vp f #v + c p,F,) + V&la2 - 1,) 

+(a,D, - D,)Vc, +@,A, -A#‘p. (40) 

This equation is the key relation of the present note. In 
contrast to other works concerned with porous media, 
it is the acceleration rather than the velocity which is 
expressed in terms of the set of independent variables. 
The consequences on a typical problem of fluid 
mechanics, like Rayleigh-Btnard thermal convection, 
will be examined in the next section. 

For further comparison, let us define the perme- 
ability K by the relation 

P,(l -w2) = y?_ 

t2 K’ 

Since the coupling coefficients a1 and Q~ are generally 
small compared to unity, it is reasonable to write 

(42) 

According to the kinetic theories, e.g. [22, 231, the 
relaxation time x2 is related to the mean free time or the 
reciprocal of the collision frequency of diffusing 
particules ; for usual fluids, z2 takes values ranging 
between 10-s and lo-r3 s. The result (42)indicates that 
K is of the same order of magnitude, i.e. K * 1O-8- 
fOei mz. 

Within the limit of an incompressible and isothermal 
fluid for which Vp = Vc, = VB = 0, the balance 
equation (40) simply becomes 

patvF = - +Vn+;nV’v,f~pP,. (43) 
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For steady flows and in the absence of external forces, 
one recovers Brinkman’s relation 

vp+ xv,-rjvzv, = 0, (44) 

where rj = (pJp)q is the effective viscosity. Clearly (43) 
reduces to Navier-Stokes’ equation as K -+ co and to 
Darcy’s relation 

vp++o, 
if K/d’ << 1 (d denotes a spatial length scale). 

Darcy’s law is usually selected when the volume of 
the solid particules is larger than the volume occupied 
by the fluid, otherwise Brinkman’s law is preferred. 

It is important to realize that Brinkman’s law has 
been established on sound macroscopic thermody- 
namical bases and appears as a simplified form of 
the evolution equation for the fluid flow. 

Our next objective is to formulate the energy balance 
equation. Using the definition 

u = *+es 

and the Gibbs relation (33), one obtains within the 
linear approximation : 

4u = c, 4+$$&)]ea,, 

atcf + O(2), (46) 
c 

where subscript e refers to a quantity measured at 
equilibrium, parameter c, is the heat capacity evaluated 
at equilibrium. Substitution of (46) in (13) yields the 
equation governing the temperature field : 

PC, ate = -v-q++ ~~($Jyv 

-[82;(;)]~.J,+a:V+pr. (47) 

Although the model developed in this section is 
rather simple, there is no fundamental difficulty to 
extend it by including, for instance, the deformation of 
the solid matrix and the effects of interface between the 
solid and liquid phases. However the objective of the 
present note is not to propose a complete theory of 
porous media but rather to emphasize the con- 
sequences resulting from a descriptive within the 
framework of extended irreversible thermodynamics. 

5. NATURAL CONVECTION 

IN POROUS MEDIA 

(BENARD PROBLEM) 

The model proposed in Section 4 is used to describe 
natural convection in a horizontal layer of a saturated 
porous medium heated from below. The layer, of 
thickness d, extends to infinity ; it is bounded above and 

below by either rigid or stress-free plane surfaces, 
moreover the boundaries are either perfectly heat 
conducting or adiabatically insulated. The porous 
medium is saturated by an incompressible fluid of 
dynamic viscosity q. It is assumed that the heat flux and 
the viscous stress relax mush faster than the diffusion 
flux (rr << rl, r3 << r,), which is expected to be the 
dominant effect in the present problem. Throughout 
this section, only infinitesimally small disturbances are 
considered. 

In the unperturbed reference state, the porous 
medium is at rest with a temperature drop AT between 
the lower and upper bounding surfaces. Within 
Boussinesq approximation, the relevant equations are 

v * Vf = 0, (48) 

V * Jr = 0, (49) 

+ j$ g - & (a,q + 12ve), (50) 

pk, ate = -vaq, 

the density p is given by the state equation 

P = Po[l -E(e-eo)l, 

c1 is the heat expansion coefficient and superscript ’ 
refers to a constant value calculated at the reference 
temperature 8”, say the steady temperature of the lower 
face of the layer. Equation (48) indicates that the fluid is 
incompressible and (49) that the concentration remains 
constant, the latter being a consequence of the former. 
Equation (50) is a reformulation of (38) wherein 
Boussinesq hypothesis has been introduced. Within the 
same approximation, the energy balance takes the 
simple form (51) (no viscous dissipation) while (52) is a 
simplified form of (34) wherein all the above mentioned 
hypotheses have been used, (52) may also be viewed as 
an extension of the Fourier law involving an extra 
linear term in the fluid velocity. 

From now on the procedure is routine. One 
determines firstly the solution in the basic quiescent 
state given by 

$=o, eb=-~z+e,, qb = L $ e,, (53) 

where e, is the unit vector pointing upwards and index b 
refers to the basic solution. After onset of convection, 
the variables take the values 6, vr and q and one defines 
perturbed quantities by 

ep = e-eb, V; = vf, qp = q-qb, p = p-pb. (54) 

Eliminating qp with the help of (52), equations (51) and 
(50) reduce to 

AT 
a,ep - - w = dzep, 

d (55) 
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atvf = - f vf - i vp + % VV~V, + dpg 

+ h @a, - &Wp, (56) 

superscripts zero affecting the densities have been 
dropped, K is the heat diffusivity, v the kinematic 
viscosity, w the vertical component of the fluid velocity. 
Elimination ofVpp and VBp in (56) and adimensionaliz- 
ation of z, t, w, 0 by means of d, d2/K, K/d and AT yields 
the following set of equations : 

ap - W* = v26*, (57) 

k a,V2w* = Ra V:ff * - f V2w* 

+v4w*, (v: = a:,+a:y). (58) 

In (57) and (58), an asterisk denotes a dimensionless 
field ; Pr, Ra and X are the Prandtl, Rayleigh and 
permeability dimensionless numbers, respectively 
defined by 

Pr - Pr v Ra = aqATd3 
P K’ (PfIPbK’ 

X = $. (59) 

Apart from the factor prjp, these expressions are 
classical. When X + co, one recovers the well-known 
relations governing the BCnard-Rayleigh problem. In 
the limit X -+ 0, (57) and (58) are identical to the 
equations derived from Darcy’s law [24,25]. 

We search for solutions of the form 

(w*, @*) = [W(z), O(z)] exp (ik * x + rrt) (60) 

wherein W(z) and e(z) are the amplitudes of the 
disturbed velocity and temperature fields, k the 
horizontal wavenumber, x the horizontal position 
vector, (r the time growth constant. At marginal 
stability, not only the real part (Re a) but also the 
imaginary part (Im U) vanish since the set (57)-(58) 
coupled with the appropriate boundary conditions is 
self-adjoint; as a consequent, exchange of stability 
holds. After substitution of (60) in (57) and (SS), one 
obtains the following equations for the amplitudes at 
marginal stability : 

(D2-k2)2W-XX1(D2-k2)W =X’RaO, (61) 

(D2 - k2)0 = - W, (62) 

where D stands for I?,. 
The associated boundary conditions at z = 0 and 

z= lare: 

0 = 0 (isothermal surface), 
DO = 0 (thermally insulated surface), (63) 

W = DW = 0 (rigid surface), (64) 

W = DZ W = 0 (free surface). (65) 

Elimination of 0 between (61) and (62) leads to 

(D2-k2)3W-X-1(D2-k2)2W = -k2RaW, (66) 

whose solution for two free surfaces, perfectly heat 

conducting, is 

W=Asinnnz (n=1,2,...). (67) 

The marginal stability curve, Ra vs k, is derived by 
replacing (67) in (66); one finds 

Ra = (nZ + k’)’ ~[3Y-‘+(nZ+k*)]. 
k2 

(68) 

The critical values R, and k, are obtained from 
aRa/ak = 0 and given by 

R = CR2 +kEj2 
c -j-p--- (A + C)> 

E 

k,Z = 
-A+J?imz 

4 ’ (69) 

where A stands for 

A= X-‘+n2. 

For X + co, one recovers 

k,=2n, R,+‘, Jz (70) 

and for X -+ 0, 

k, -+ n, XR, --f 47c2, (71) 

XR, is generally referred in the literature as the 
Rayleigh-Darcy number. The results (70) and (71) are 
well-known : (70) are the critical values obtained from 
the classical Navier-Stokes equations while (71) are the 
critical parameters corresponding to the use of Darcy’s 
law, coupled with the boundary conditions 0 = W = 0 
[i 11. Intermediate, critical values corresponding to X 
ranging from lo-’ to 10s2 are given in Table 1. 

When both surfaces are not free and perfectly heat 
conducting, no analytical solution of (66) is available 
and numerical calculations are needed. Reported in 
Tables 2 and 3 are some critical values of R, and k,, as a 
function of X, when the face below is rigid and 
isothermal while the face above is successively rigid, 
thermally conducting and free, thermally insulated. 
The problem has been solved by using a Galerkin 
technique whose details can be found in earlier works 
by the authors, e.g. [26-281. 

Tables 1 and 2indicate that,for tworigid and two free 
isothermal bounding surfaces, stability is increased 
with respect to Darcy’s model. This is not surprising 
since the supplemental contribution introduced in 
our analysis is a viscous term whose effect is to inhibit 

Table 1. Critical values YR, and k, : two free isothermal faces 

x X^R, kc 

10+ 39.48 3.14 
1O-6 39.48 3.12 
10-S 40.25 3.11 
lo-* 47.27 2.92 

cx? (Navier-Stokes) 657.5 (= R,) 2.22 
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Table 2. Critical values XR, and k, : two rigid isothermal faces 

X XR, k, 

0 (Darcy) 
1o-9 
1o-6 
1o-3 

co (Navier-Stokes) 

4s’ (39.48) L (3.14) 
41.5 3.22 
41.6 3.21 
43.1 3.20 

1708 (=R,) 3.12 

instability. It is also noticed that the stability limit is 

practically unmodified when X varies from 0 to 10e3. 
This confirms earlier conclusions by Katto and 
Masuoka [23] who stated that a linear stability 
analysis based on Darcy’s law is acceptable even for 
large values of the permeability. Similarly, the critical 
wavenumber is only slightly affected by the variation of 
the permeability; one observes however a small decay 
for k,, which means larger convection cells, when the 
permeability increases. 

Most of the above observations can be repeated for 
Table 3. R, as well as k, are rather insensitive to the 
variations of X ; as expected, the system is less stable 
than in the case of two rigid boundaries. But unlike the 
results ofTables 1 and 2, one now notices a considerable 
difference with respect to Darcy’s model : the critical 
Rayleigh-Darcy number differs by more or less 300% 
and the critical wave number by more than 150%. 

The analysis of the results shows also that when the 
permeability tends to infinity, instability is not altered 
by the presence of the porous medium. The system 
behaves like an ordinary fluid, with critical wave 
Rayleigh numbers equal to 657.5, 669 and 1708 
according to the boundary conditions. In contrast, for 
small values of the permeability, the Navier-Stokes 
equations must be discarded on behalf of more 
elaborate models including explicitly the effects of the 
porosity. 

All the results presented up to now are baaed on the 
Boussinesq approximation stating, among other 
simplifications, that the viscosity of the fluid is 
independent of the temperature. In the following, we 
relax this constraint by assuming that the viscosity 
depends linearly on the temperature [29,30] : 

v = vO[l +(&$AZ-1. (72) 

As a consequence, the term in vV%, must everywhere 
be substituted by V * (vvv,). It is readily checked that at 

Table 3. Critical values XR, and k,: a lower rigid isothermal 
and an upper free insulated face 

X 

0 (Darcy) 
1o-9 
1o-6 
10-s 

co (Navier-Stokes) 

XR, k, 

n2 (9.87) 7L/2 (1.57) 
27.3 2.30 
27.3 2.29 
28.5 2.28 

669 ( = R,) 2.08 

marginal stability, the basic relation (66) is replaced by 

(1-R,z)[(DZ-k2)3W-&---(D2-k2)2W-j 

- R,[4(D2 - k*)*DW- 3X- ‘(D* - k*)Dfl 

= -k*RaW, (73) 

where R, stands for the dimensionless viscosity number 

For common fluids, R, takes values ranging from -0.5 
for oil to 0.5 for air [30]. The eigenvalue problem has 
been solved for two free and perfectly heat conducting 
surfaces in the Appendix. The critical Rayleigh-Darcy 
numbers are listed in Table 4 as a function of the 
dimensionless number R,, for three values of X, namely 
X = 0, lo-* and co. 

The critical wavenumbers are not reported in Table 4 
because they remain close to the values calculated for 
R, = 0. In contrast, the critical Rayleigh-Darcy 
numbers are appreciably affected by the temperature 
dependence of the viscosity. As a matter, XR, varies by 
about 25% when going from R, = 0 to R, = -0.5 and 
by more than 35% passing from R, = 0 to R, = 0.5. The 
stability limit is raised with increasing absolute values 
of R, for R, < 0 (i.e. in liquids) but for R, > 0 (i.e. in 
gases), the stability limit is lowered when R, is growing. 
It is important to note that the variation ofthe viscosity 
with the temperature plays a decisive role in 
determining the onset of stability in Btnard-Darcy 
problem. 

0. FINAL COMMENTS 

The present note has two objects in view : to describe 
a class of porous media within the framework of 
extended irreversible thermodynamics and to apply the 
proposed model to the Benard-Darcy convection 
problem. 

It is shown that extended irreversible thermody- 
namics is particularly well suited for modelling 
porous systems. Of course, in formulating the present 
model, several simplifications have been introduced : 
surface effects have been omitted, as well as changes of 
phase or deformations of the solid matrix. But our 
primary objective was not to give a complete 

Table 4. Critical values of XR, for various assigned values of 
R, and X : two free isothermal faces 

X 
R” 0 10-r ~0 (R,) 

-0.5 49 58.34 817 
-0.3 45.25 53.88 754.5 
-0.1 41.45 49.32 690 

0 39.48 46.99 657.5 
0.1 37.5 44.62 624.5 
0.3 33.35 39.73 556.5 
0.5 28.96 34.51 485.5 
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description of porous media but rather to extract the 
main new features resulting from an analysis based on 
extended irreversible thermodynamics. 

Oneofthemain interests of this work is to ground the 
Brinkman model on sound thermodynamic founda- 
tions. It is seen that Brinkman’s equations arise as a 
particular expression of the evolution equation of the 
fluid flow, when the gradients of the slow variables 
(density and temperature) are negligible. The perme- 
ability also receives an original interpretation in terms 
of the relaxation time of the fluid flux. 

To show that the proposed model is not a mere 
abstraction, it is used to describe natural convection in 
a thin fluid layer heated from below (Rayleigh-Darcy 
problem). Differences with earlier treatments based on 
Darcy’s law are emphasized. In particular, it is shown 
that the latter must be used with caution when the upper 
bounding surface is free: in the case of an upper 
thermally isolated boundary, the critical values of the 
Rayleigh-Darcy number may differ by a factor of three, 
according to whether our model or the Darcy model is 
selected. It is also shown under which circumstances, 
Darcy’s model is reliable: in general, it provides 
reasonable results as long as the permeability is smaller 
than 10e3. The effect of a temperature-dependent 
viscosity on the onset of convection can also be easily 
included into the frame of our formalism. The results 
indicate that this latter effect plays an important role : 
the critical Rayleigh-Darcy number can differ by as 
much as 35% in comparison to its value calculated for a 
constant viscosity. 
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APPENDIX 

Resolution of equation (73) 
For the sake of clarity, let us recall expression (73) : 

(~-R,z)[(D~-~~)~W-K-~(D~-~~)~W] 

-R,[4(D2-k2)2DW-3K-1(D2-kZ)DW] 

= -k’RaW. (Al) 

We seek solutions of the form 

w = f c,rn, (A2) 
“=O 

where the coefficients c, are obtained by substituting (A2) in 
(Al); this operation yields the following set: 

co,cl,. .,c5 are arbitrary, 

(n+5) (3k2+.%‘-‘) 
C n+6 = R&.+5-- + 

(n+6) (n+5)(n+6)C”+4 
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-kZ 
(2x--‘+3k2) 

(n+3)(n+4)(n+5)(n+6)C”+Z 

+ 
R,k2[4k2+3.%-‘+n(3k2+.f-1)]c,,+I 

(n+2)@+3)@+4)(n+5)(n+6) 

k’[Ra-k2(k2+X-‘)I 

-(n+l)(n+2)(n+3)@1+4)(n+5)(n+6)~” 

R,k4(k2 +A’-~)c,+~ 

-(n+l)(n+2)(n+3)(n+4)(n+5)(n+6)’ 
(A3) 

Without lack of generality, one is allowed to write W as thr: 
sum of six independent solutions 

w = f C,W” (~44) 

such that 

“=o 

W, = W for c, = 1, ci = 0 (i # n). 

The c, are derived from the boundary conditions ; from 

W(0) = D’W(0) = O(0) = 0; (A5) 

it is readily seen that 

cc = c2 = 0, (A6) 

c,, = R,[12c,-(xX-‘+2k2)c,]/24, (A7) 

while from 

one obtains : 

W(1) = D2W(1) = 0, (A8) 

c5 = -_(a,c,+w,), (A9) 

Bl 
cg = --cl, 

83 
(Al’3 

ar,as,/?i and & are respectively given by 

W,(l)-R,[X-‘+2k2]W,(1)/24 
a1 = 

w,(l) 
(All) 

a3 = CK(~)+WWWW,U)~ 6412) 

/?I = S2ct, -aiD’Ws(l), (A13) 

fiJ = 62a,(l)-a,D2Ws(1); (A14) 

where 6’a, and #a3 (i = 1,2,. .) stand respectively for 

$a, = D’W,(l)-R,(x’-‘+2k’)D’W,(l), i = 1,2,... (A15) 

#as = D’W,(1)+2R,D’W,(l). (A16) 

Finally, applying the remaining boundary condition 

O(1) = 0 (A17) 

leads to a characteristic equation which can be solved directly 
for the eigenvalues Ra in terms of k, X and R, ; this equation 
takes the form 

R,(X-‘+2k2) 
{ 

61al-DW,(1)al -F[B’a,-r,DW,(L)] 
3 I 

-2R, b’a,-alD3W,(1)-~d3r,-a,D1W,(l) 
1 3 I 

+(1-R,) 
I 

8’al-a1D’W,(l)-~[S4a~-a~D4W~(1)] 
1 

= 0. 
3 

(A18) 

MODELISATION THERMODYNAMIQUE DES ECOULEMENTS DE FLUIDE A TRAVERS 
LES MILIEUX POREUX: APPLICATION A LA CONVECTION NATURELLE 

R&sum&-La thermodynamique des irreversibihtes est employee pour modeliser les milieux poreux. L’idte de 
base est de considerer le flux thermique et le flux de diffusion comme des variables independantes et de 
considtrer le milieu poreux comme un melange binaire form& dun solide rigide et dun fluide. Parmi d’autres 
rbsultats, la loi de Brinkman recoit une justification thermodynamique et le domaine d’application de la loi de 
Darcy est etabli avec precision. Le meddle est applique a l’etude de la convection naturelle dans une couche 
poreuse mince chauff&e par le bas (instabilite de B&nard). Le probleme est trait& par I’analyse lintaire de 
perturbation: le role des conditions aux limites et de la permeabilitt sur l’apparition de la convection est 
degage : une attention speciale est aussi port&e sur les effets de la dependance de la viscosite vis-a-vis de la 

temperature. 

THERMODYNAMISCHES MODELL VON FLUID-STRGMUNGEN IN PORGSEN MEDIEN: 
ANWENDUNG AUF DIE NATURLICHE KONVEKTION 

Zusammenfassung-Auf der Grundlage der irreversiblen Thermodynamik wird ein porijses Medium 
modelliert. Die Grundidee ist, den Warme- und den Diffusionsstrom zu unabhiingigen Variablen zu erheben 
und das poriise Medium als Zweistoffgemisch aus einem ideal starren Feststoff und einem Fluid zu betrachten. 
Neben anderen Ergebnissen erhglt das Gesetz von Brinkman einen thermodynamischen Nachweis, und der 
Anwendungsbereich des Darcyschen Gesetzes wird genau aufgezeigt. Das Model1 wird angewendet, urn die 
natiirliche Konvektion in einer von unten beheizten, diinnen, porosen Schicht zu untersuchen (BCnard 
Instabilitat). Das Problem wird mit einem linearen Stiirungsansatz gel&t. Der EinfluB der Randbedingungen 
und der Permeabilitiit auf das Einsetzen der Konvektion wird dargestellt. Besonderes Augenmerk wird 

augerdem auf den EinfluB einer Temperaturabh&ngigkeit der Viskositiit gerichtet. 
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TEPMOflBHAMBqECKOE MO~EJIRPOBAHkfE TEqEHMn XKM~KOCTM rIEPE3 
FlOPMCTbIE CPEAbI. CJIY’JA~ CBOSOAHOI? KOHBEKL&Wi 

AHHOTaUHn-PaCmapeHHaa TCpMOnAHaMBKa HCO6paTUMbIX UpOUeCCOB HCUOJIb3)‘CTC~ IIpH MOA‘ZJlkipOBCi- 

H&W IIOpUCTbIX CPC,.,. OCHOBHbIe liflIeM COCTOXT B TOM, YTo6bI aHaJIU3‘lpOBaTb TCITnOBOii li AH+N$y3HOH- 

Hblti UOTOKH KaK He3aBHCHMble UepeMCHHbIe II PaCCMaTpUBaTb IIOpUCT)WJ Cpen)’ KBK 6IIHapHyEO CMCCb, 

06pa30BaHHyIO COB’ZpLUCHHO XWZTK‘IM TBepAbIM TCJIOM M )KWLIKOCTbIO. Haprny C ,4pyrkiMM p3yJIbTZi- 

TaMU UOJIYWHO UOATBepXQeHAe 3aKOHa 6pEfHKMaHa, a TaKmC YCTKO OIIp’CAUIeHa 06nacTb UpUMeHCHM8 

3aKOHa Aapcu. n~~JIOW?HHafl MOWJIb MCUOJIb3yeTCS JIJISI A3y’ieHkiK C~o60LlHOfi KOHBCKUHIl B TOHKOM 

IIO~CTOM cnoe, HarpesaeMoti cm3y (HeycToAwmocrb JieHapna). 3anara aeankisapyexa c nokfoubm 
MeTOna ,IlrH&iHbIX B03MyIUCHHfi: UOAWpK~BaCTC,3 POJIb rpaHWIHbIX YCJIOBMfi II IIpOHWaCMOCTU Ha BO3- 

HMKHOBCHRC KOHBBKUHU, oco6oe BHIiMaHMC yACJI%TCfl 3#$CKTaM, 06yCJlOB.WHHbIM 3aBkfCHMOCTbH) B113- 

KOCTIl OT TCMUCpaTypbI. 


